MalSpot: Multi2 Malicious Network Behavior Patterns Analysis

نویسندگان

  • Ching-Hao Mao
  • Chung-Jung Wu
  • Evangelos E. Papalexakis
  • Christos Faloutsos
  • Kuo-Chen Lee
  • Tien-Cheu Kao
چکیده

What are the patterns that typical network attackers exhibit? For a given malicious network behaviors, are its attacks spread uniformly over time? In this work, we develop MalSpot, multi-resolution and multi-linear (Multi) network analysis system in order to discover such malicious patterns, so that we can use them later for attack detection, when attacks are concurrent with legitimate traffic. We designed and deployed MalSpot, which employs multi-linear analysis with different time resolutions, running on top of MapReduce (Hadoop), and we identify patterns across attackers, attacked institutions and variation of time scales. We collect over a terabyte of proven malicious traces (along with benign ones), from the Taiwanese government security operation center (G-SOC) , during the entire year of 2012. We showcase the effectiveness of MalSpot, by discovering interesting patterns and anomalies on this enormous dataset. We observed static and time-evolving patterns, that a vast majority of the known malicious behavior seem to follow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DyVSoR: dynamic malware detection based on extracting patterns from value sets of registers

To control the exponential growth of malware files, security analysts pursue dynamic approaches that automatically identify and analyze malicious software samples. Obfuscation and polymorphism employed by malwares make it difficult for signature-based systems to detect sophisticated malware files. The dynamic analysis or run-time behavior provides a better technique to identify the threat. In t...

متن کامل

Detecting Bot Networks Based On HTTP And TLS Traffic Analysis

Abstract— Bot networks are a serious threat to cyber security, whose destructive behavior affects network performance directly. Detecting of infected HTTP communications is a big challenge because infected HTTP connections are clearly merged with other types of HTTP traffic. Cybercriminals prefer to use the web as a communication environment to launch application layer attacks and secretly enga...

متن کامل

Providing a Method to Identify Malicious Users in Electronic Banking System Using Fuzzy Clustering Techniques

Money-Laundering causes a higher prevalence of crime and reduces the desire tending to invest in productive activities. Also, it leads to weaken the integrity of financial markets and decrease government control over economic policy. Banks are able to prevent theft, fraud, money laundering conducted by customers through identification of their clients’ behavioral characteristics. This leads to ...

متن کامل

Mobile malware detection through analysis of deviations in application network behavior

In this paper we present a new behavior-based anomaly detection system for detecting meaningful deviations in a mobile application’s network behavior. The main goal of the proposed system is to protect mobile device users and cellular infrastructure companies from malicious applications by: (1) identification of malicious attacks or masquerading applications installed on a mobile device, and (2...

متن کامل

Providing a Method to Identify Malicious Users in Electronic Banking System Using Fuzzy Clustering Techniques

Money-Laundering causes a higher prevalence of crime and reduces the desire tending to invest in productive activities. Also, it leads to weaken the integrity of financial markets and decrease government control over economic policy. Banks are able to prevent theft, fraud, money laundering conducted by customers through identification of their clients’ behavioral characteristics. This leads to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014